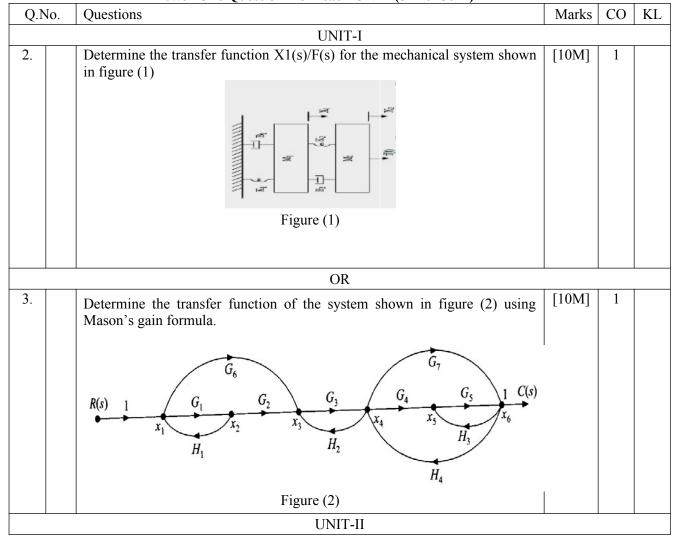
HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) III B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL– 2023 CONTROL SYSTEMS

(ECE Branch)

Time: 3 hours


Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1.	a)	Illustrate closed loop system with suitable example.	[2M]	1	
	b)	What are the drawbacks of Static Error Coefficients?	[2M]	2	
	c)	What is the necessary condition for stability of the system?	[2M]	3	
	d)	How do you infer whether a system is critically stable from bode plots?	[2M]	4	
	e)	Define Controllability of a System.	[2M]	5	

<u>PART-B</u> Answer One Question from each UNIT (5X10=50M)

Couc	Lode No. 1 18EE105								
4.	a)	Explain the Standard test signals	[5M]	2					
	b)	Describe the time response of first order system for Step input signal.	[5M]	2					
OR									
5.		A unity feedback system is characteristic by an open loop transfer function $\frac{10}{G(S) = S(S+6)+10}$ i) Find the constants K_p , K_v and K_a and ii) determine the steady state error if the input is $r(t) = 1+t+t^2$.	[10M]	2					
UNIT-III									
6.		Using Routh-Hurwitz criterion, determine the stability of the closed loop system that has the following characteristic equation and also determine the number of roots that are in the right half s-plane and on the imaginary axis: $8S^{6}+3S^{4}S^{3}+6S^{2}+S+9=0$.	[10M]	3					
OR									
7.	a)	Explain the frequency domain specifications.	[5M]	3]				
	b)	Define Polar plot and Sketch the polar plot of a system given by $\frac{1}{1}$	[5M]	3					
		$G(s) = \frac{1}{[S(S+1)(2S+1)]}$							
		UNIT-IV	I						
8.		Explain the different steps to be followed for design of lag-lead compensator using bode Plot.	[10M]	4					
OR									
9.		Design a lead –lag compensator to meet the following specifications : (a).Phase margin is at least 40 ° and (b) steady state error for the ramp input is 0.04 rad , if A unity feedback system has open loop transfer function . $\frac{K}{G(s) = \left[S(S+1)(S+30)\right]}$	[10M]	4					
UNIT-V									
10.	a)	.Explain :- (i)state variables and (ii) State transition matrix	[5M]	5					
- • •	b)	Write state variable representation for lag compensation network.	[5M]	5					
	OR								
11.	a)	Explain the properties of state transition Matrix.	[5M]	5					
	b)	Consider a system having state model $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix} U$ and	[5M]	5					
		Y= $\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{vmatrix} X_1 \\ X_2 \end{vmatrix}$ with D=0. Obtain its transfer function.							
